Surface Reflectance Estimation and Natural Illumination Statistics
نویسندگان
چکیده
Humans recognize optical reflectance properties of surfaces such as metal, plastic, or paper from a single image without knowledge of illumination. We develop a machine vision system to perform similar recognition tasks automatically. Reflectance estimation under unknown, arbitrary illumination proves highly underconstrained due to the variety of potential illumination distributions and surface reflectance properties. We have found that the spatial structure of real-world illumination possesses some of the statistical regularities observed in the natural image statistics literature. A human or computer vision system may be able to exploit this prior information to determine the most likely surface reflectance given an observed image. We develop an algorithm for reflectance classification under unknown real-world illumination, which learns relationships between surface reflectance and certain features (statistics) computed from a single observed image. We also develop an automatic feature selection method.
منابع مشابه
Reflectance and Natural Illumination from a Single Image
Estimating reflectance and natural illumination from a single image of an object of known shape is a challenging task due to the ambiguities between reflectance and illumination. Although there is an inherent limitation in what can be recovered as the reflectance band-limits the illumination, explicitly estimating both is desirable for many computer vision applications. Achieving this estimatio...
متن کاملSurface Reflectance Classifying under Natural Illumination
Though a point light source is more suitable to measure the BRDF of the surface, the natural illuminations in the real-world are not point light source and very complex. Fortunately, the complex natural illuminations exhibit some statistical regularity [3]. These statistical properties of the natural illuminations lead to predictable image statistics for a surface with given reflectance propert...
متن کاملReal-world illumination and the perception of surface reflectance properties.
Under typical viewing conditions, we find it easy to distinguish between different materials, such as metal, plastic, and paper. Recognizing materials from their surface reflectance properties (such as lightness and gloss) is a nontrivial accomplishment because of confounding effects of illumination. However, if subjects have tacit knowledge of the statistics of illumination encountered in the ...
متن کاملSurface reflectance recognition and real-world illumination statistics
Humans distinguish materials such as metal, plastic, and paper effortlessly at a glance. Traditional computer vision systems cannot solve this problem at all. Recognizing surface reflectance properties from a single photograph is difficult because the observed image depends heavily on the amount of light incident from every direction. A mirrored sphere, for example, produces a different image i...
متن کاملRecognition of Surface Reflectance Properties from a Single Image under Unknown Real-World Illumination
This paper describes a machine vision system that classifies reflectance properties of surfaces such as metal, plastic, or paper, under unknown real-world illumination. We demonstrate performance of our algorithm for surfaces of arbitrary geometry. Reflectance estimation under arbitrary omnidirectional illumination proves highly underconstrained. Our reflectance estimation algorithm succeeds by...
متن کامل